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Abstract. Measuring and assessing mental models of individuals and teams requires the capturing and 

analysis of key latent variables. This paper presents and compares four different research methods (ACSMM, 

SMD, MITOCAR and DEEP) that capture and create a conceptual representation of individual and team 

mental models. These methods use qualitative and quantitative techniques to investigate a single comparison 

of different groups or individuals’ mental models with another group’s mental model or to investigate the 

comparison of a group or individuals’ mental model with themselves at a later time.  

1 Introduction 

Various fields of human science investigate many factors associated with cognition and mental models. 

Scientists are continually developing new techniques to capture key latent variables associated with 

cognition. One specific area of interest is with internal conceptual systems (mental models and schemata). 

These conceptual systems are theoretical constructs of science that are not observable. Therefore, 

individuals have to externalize their conceptual systems, and changes in these externalizations are 

interpreted as changes in the underlying conceptual systems; i.e. researchers can only learn of conceptual 

systems if individuals communicate their systems (Seel, 1991). A key research interest is to capture and/or 

create conceptual representations of these internal conceptual systems.  

A common analytical requirement is to compare conceptual representations of one group or individual 

with the representations of another group or individual or even with oneself at a later time. These analytical 

comparisons are made to represent differences and change of cognitive function. As new techniques and 

methods are being developed, the question of a valid and reliable measurement of change is one of the 

central problems of conceptual systems research (Seel, 1999). As such, there are two comparative situations 

that merit considerations: 1) a single comparison of different groups or individuals with another group and 

2) the comparison of a group or individual with themselves over time. Accordingly, the psychological and

educational diagnosis of internal conceptual systems presupposes repeated measurements of these systems 

over the course of a given process (Ifenthaler & Seel, 2005), both for individual and team performance. 

Given these research interests, several researchers are conducting a series of studies evaluating four 

different research methods (ACSMM, SMD, MITOCAR and DEEP) that are specifically aimed at 

comparing internal conceptual representations of both individuals and teams. The purpose of the study is to 

determine the strengths for each method, to understand how these tools are unique, and to determine if the 

specific techniques could be collectively used to ultimately further mental model research and theory 

development. Each of these research methods employ concept maps as part of the conceptual system 

elicitation and/or part of the analysis results. Due to the complexity of the studies, this paper will not 

present the preliminary findings, but will describe each method as well as the series of comparative studies.  

2 Methodology Descriptions 

While the initial rationale for each method was different, this section seeks to describe each method. The 

methods employ various techniques (quantitative, qualitative) but each use concept maps as part of their 

methodological tasks. 



 

2.1  Analysis Constructed Shared Mental Model (ACSMM) Methodology 

The ACSMM methodology (O’Connor & Johnson, 2004) was developed as a method to determined 

sharedness among team members. The basic technique involved eliciting concept maps from individual 

teammates and then using the ACSMM phases to analyze the individual concept maps thereby creating a 

single concept map that represents the shared components of the team.  

 

Through concept mapping, similarity of mental models can be measured in terms of the proportion of 

nodes and links shared between one concept map (individual mental model) and another (Rowe, 1995). 

Utilizing qualitative techniques with an aggregate method of creating an analysis constructed shared mental 

model (ACSMM), we can capture a more descriptive understanding than by using quantitative techniques. 

 

The ACSMM technique translates individual mental models into a team sharedness map without losing 

the original perspective of the individual, thereby representing a more accurate representation of team 

sharedness. The methodology includes several phases: elicitation design and preparation, elicitation of 

individual team member mental models, coding of individual data, analysis of data to determine what is 

shared among team members, and construction of the team conceptual representation. 

 

Phase I: Elicitation Design—In order for individuals to create a fully constrained or semi-constrained 

concept map, a topic analysis is preformed to generate the list of related terms. The process of analysis 

focuses on determining the various components of a concept and logical relationships, if any. Many topics 

are ill-structured and allow for multiple logical arrangements. Once the components of the topic have been 

generated, these terms are then used to help elicit individual mental models. 

 

Phase 2: Individually Constructed Mental Model (ICMM) Elicitation—Prior to the data collection 

process, a guided practice is provided to demonstrate how to create a concept map. Participants also create 

a simple concept map by themselves or with others. Concepts maps are reviewed and feedback is provided. 

If subsequent elicitations are to take place, no guided practice is required. Individuals are then ready to 

create their individually constructed mental model (ICMM). 

 

Phase 3: ICMM Coding—In order to compare and measure a degree of sharedness in ICMMs, factors 

such as concepts, links, and cluster combinations are used in analyzing individually constructed concept 

maps (Doyle, 1998; Jonassen, 1997; Novak & Gowin, 1984). Coding also considers implicit relationships 

between concepts and structural factors such as directional links and sequence indicators. If the topic of 

study focuses on a process task, it would be appropriate to use causal measures (directional links, sequence 

of concepts, and clusters) rather than hierarchical measures and cross-links for coding as suggested by 

Novak and Gowin (1984).  

 

The ACSMM method accounts for map relatedness at the concept, link, and cluster levels. Because 

maps appear so unique, the coding strives to reduce the logical, spatial, and structural information and code 

them so that comparisons among maps can be made. The coding process involves documenting the explicit 

information on the maps as well as making assessments regarding implicit information. This assessment 

allows for explication of implicit relationships by considering the spatial, structural and logical information 

in the map. The coding process involves studying concepts, links, and clusters within each ICMM. The 

process of coding is much like the process of interpretation. Each map is analyzed and then the researcher 

codes their interpretation in a spreadsheet or other appropriate tool. 

 

Phase 4: Shared Analysis—After coding the ICMMs, the next step involves an analysis of the ICMM 

dataset to determine what items were shared by team members. The data tables resulting from ICMM 

coding are compared for similarity across team members. We suggest starting with a sharedness criterion of 

50%. Then determine the shared items for that sharedness level. Depending on the sharedness level 

sensitivity, the level can be adjusted up or down to increase or decrease the sensitivity. The percentage or 

number of team members sharing each item is recorded, and all shared items are carried forward for use in 

constructing the representation of the team’s shared mental model, the ACSMM. 

 



 

Phase 5: ACSMM Construction—The analysis constructed shared mental model (ACSMM) is 

constructed from the shared ICMM dataset generated in Phase 4. This construction process includes the 

following steps: Step 1: List Shared Concepts, Step 2: Configure Shared Clusters, Step 3: Configure Shared 

Links, and Step 4: Configure Non-linked Concepts. The ACSMM methodology is repeated for each 

subsequent set of concept maps. Once the sharedness between all ICMMs has been identified, the analysis 

constructed shared mental models can be compared looking at change over time for a specific team or the 

ACSMM s can be compared among teams to show variation of shared mental model among teams. 

2.2 Surface, Matching, and Deep Structure (SMD) Methodology 

The Surface, Matching, and Deep Structure (SMD) methodology was developed as a means of calculating 

the mental model development of students using three different instructional treatments. The basic 

technique involved eliciting concept maps from individuals at multiple intervals over time as they use a 

specific instructional intervention. SMD is then used to determine if the concept maps for the individuals 

change over time and then combine the concept maps of students in each treatment group and compare the 

findings among treatment groups to determine the effect. 

 

The question of a precise assessment of mental models led to the development of a new methodology 

named SMD-Technology (Ifenthaler, 2006; Seel, Ifenthaler, & Pirnay-Dummer, 2006). As a basis for the 

assessment of models, SMD-Technology uses graphical drawings (concept maps) or natural language 

statements (that is then converting into a concept map) by the subjects. Both, the graphical drawings or 

natural language statements are transferred into a dataset for further analysis. The SMD-Technology is 

composed of three levels - Surface, Matching, and Deep Structure.  

 

Phase 1: Surface Structure Analysis—The first level of SMD-Technology constitutes the Surface 

Structure, on which a rapid and economical assessment of the number of propositions (2 linked nodes) is 

made possible. The Surface Structure  is defined as the sum of all propositions P  in an individual 

model. 
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Phase 2: Structural Properties Analysis—The assessment of the structural properties of the externalized 

models is realized on the Matching Structure. The Matching Structure μ is defined as the quantity of links 

L  of the shortest path between the most distant nodes K . 
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Phase 3: Deep Structure Analysis—The third SMD-Technology level is defined as the Deep Structure. 

This is the level on which the models are assessed in terms of their semantic structure. The Deep Structure 

 is calculated as the similarity (Tversky, 1977) between a shared group model Mgr  or a domain-specific 

expert model Mex  and the individually assessed model Mi . 
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2.3 Model Inspection Trace of Concepts and Relations (MITOCAR) Methodology 

Model Inspection Trace of Concepts and Relations (MITOCAR) is a software tool that is based on mental 

model theory (Seel, 1991) and uses natural language expressions as input data for model re-representation 

instead of using graphical drawings by the subjects. This is made possible by parsing and corpus linguistics 

technologies that are similar to those used to implement automated learning of concept hierarchies from 

text corpora to construct ontology (Maedche et.al. 2002). 

 



 

One of the goals of MITOCAR is to dig deeper into the semantics of models, especially shared models 

within groups of experts. This is done during a phase of assessment and an inferential phase. During the 

assessment phase of MITOCAR, subjects usually go through two different rounds. In the first round they 

only provide a number of natural phrases (usually sentences) about their specific subject matter. Before the 

second round, the parser extracts the most frequent concepts from the text corpus of the group and connects 

them to pairs of concepts.  

 

In the second round the subjects rate how close the concepts are and how sure they are about their 

assessment. The participants also cluster their concepts from a random list into a list of groups – a method 

that is sometimes used in knowledge tracking (Janetzko, 1996). Additionally, subjects rate the plausibility 

of their fellow group members’ source phrases.  

 

From this data MITOCAR calculates a proximity vector that represents the whole model that is used to 

build the model representation (concept map). These data allow one to derive models and even graphical 

models (Fruchterman & Reingold, 1991; Ganser & North, 1999) that can then be compared in several new 

ways. This is done with the inferential modules of MITOCAR.  

 

While the semantic comparison of MITOCAR uses traditional measures of similarity (Tversky, 1977) 

the technology of structural comparison is unique to MITOCAR and can compare models from different 

subject domains (Pirnay-Dummer, 2006). Up to now we have succeeded in re-representing the models 

graphically (concepts and structures) on non-directed graphs and comparing them by using conceptual, 

structural and combined similarity measures. Those measures are controlled using different statistical tests 

and controls for homogeneity and reliability of the group-consensus models, multidimensional scaling 

(MDS) of the proximity vectors to test for the representation in 2D and for the comparison and tracking of 

model complexity.  

 

The final outputs of MITOCAR are the graphical representations to assess a group consensus model 

from any subject domain and the comparison between different groups of experts. For both outputs there 

are automated reports which are computing, presenting and interpreting all the above mentioned measures. 

It has also been investigated how the results of MITOCAR can be used in needs assessment (Pirnay-

Dummer, 2006). In addition, the methods of MITOCAR have been applied successfully to tracking user 

behavior in e-learning environments (Dummer & Ifenthaler, 2005).  

 

Due to the modular design of MITOCAR the assessment tools (re-representation of models by means 

of natural language, parsing and graph theory) can be separated from the inferential tools (comparing 

structures and semantics and both). This opens the MITOCAR technology to use on all kinds of model-

related data.  

2.4 Dynamic Evaluation of Enhanced Problem-solving (DEEP) Methodology 

The Dynamic Evaluation of Enhanced Problem-solving (DEEP) methodology is based on a view of 

learning as becoming more expert-like (Ericsson & Smith, 1991) and more skilled in higher-order causal 

reasoning and problem solving (Grotzer & Perkins, 2000). The learning-as-becoming-like-an-expert 

perspective treats learning as a continuing process of growth rather than a single end-point measurable by a 

simple test. A fundamental assumption is that with regard to complex task performance it is possible to 

predict performance and assess relative level of expertise by examining a person’s conceptualization of the 

problem space (a problem conceptualization that suggests likely solution alternatives) for specific complex 

problems. 

 
Learning assessment in DEEP involves: 1) identifying characteristic problems in a particular complex 

task domain; 2) eliciting both expert and novice patterns of responding to these problems; 3) representing 

these responses (problem-solution conceptualizations) in a standard form; 4) measuring similarities and 

differences among experts and novices; and, 5) assessing changes in problem-space conceptualizations over 

time and with experience. 

 



 

Learners, either individually or in small groups, are presented with a short problem scenario. They are 

asked to identify the most relevant factors and issues to consider in developing a solution and then to 

illustrate the specific nature of relationships among these factors. These annotated causal representations 

are compared to prior representations and to those of experts to determine progress of learning. Three levels 

of analysis were applied to these representations. Simple counts of nodes, links, and words per node or link 

constituted a surface level analysis. Determining the extent of similar nodes and links and how they were 

connected constituted the structural analysis. Understanding what is said about a particular node or link 

constituted the semantic analysis. Because the tool allowed nodes and links to be named according to 

respondent preferences, it was not possible to easily separate the structural and semantic analysis. One 

purpose of the study was to determine the extent to which a semantic analysis would be required to 

determine relative level of expertise. 

 

A unique aspect of the DEEP methodology is that it is intended for complex problems involving causal 

relationships that are interrelated and that may change over time. Moreover, a variety of graphical 

representations (e.g., semantic networks, flowcharts, causal diagrams, etc.) can be accommodated in this 

methodology. The graphical representations are converted into standard causal representations (i.e., 

annotated causal influence diagrams). The reason for using causal representations as the basis for analysis 

is that such representations reflect internal relationships among factors and components (i.e., problem 

dynamics) and causal representations can be derived from many other graphical representations when the 

appropriate documentation is provided (e.g., the descriptions of individual factors). The DEEP 

methodology supports assessments of individual learning in problem-centered instructional modules, which 

can be used in evaluating problem-centered instructional programs (Baker, 1999; Herl et al., 1999). The 

data provides information about how well individual learners are doing in specific problem-centered 

modules. This enables teachers to adjust instructional supports appropriately and it enables learners to 

adjust their learning strategies. Additionally, instructional designers are provided with information on 

which to base specific modifications to the structure and sequence of various learning activities.  

 

Variations of this methodology have been effectively demonstrated in simpler domains (Herl et al., 

1999; Novak, 1998; Schvaneveldt, 1990). Those who have employed an analogous method for simpler 

learning tasks have relied on: simple quantitative measures for measures of similarity to expert responses 

(e.g., presence/absence of salient features and their location in a concept map); and, qualitative analysis of 

responses, which are notoriously time-intensive and costly and, consequently, hardly ever used when a 

laboratory or demonstration effort of a learning environment or instructional system scales up to full-scale 

implementation and deployment.  

2.5 Methodology Comparison 

The general characteristics of each of these methods have similarities and differences (Table 1). In each 

case, the methodology collects data that then is transformed before specific analysis can take place. 

Analytical methods for each method convert the data to emphasize a decomposition or composition of the 

initial data set. Comparisons describe the functionality of the methods to simultaneously compare/analyze 

unlimited or paired groups/individual data. 

3 Studies: Method Comparisons 

In order to meet the goals of our research (determine the method strengths, unique characteristics, and 

collective viability), we have setup a series of comparative studies to answer these questions. A series of 

pair-wise comparative studies are followed in order to detect analytical differences among the mythologies. 

There are two points of method comparisons: data conversion techniques and data analysis techniques.  

 

Each of these methodologies have been used in specific settings, however the work represented in 

these comparisons is the first project utilizing a single set of data to compare the results of these four 

methodologies. There are six studies involving two parts each. The studies compare the following pairs of 

methods: 1) ACSMM & MITOCAR, 2) SMD & MITOCAR, 3) ACSMM & SMD, 4) DEEP & SMD, 5) 

DEEP & MITOCAR, and 6) DEEP & ACSMM. 



 

 
 

Method 
Data 

Collection 
Analysis Data Conversion Comparison Fxn 

ACSMM Concept Map 

Qualitative with 

Descriptive Statistics—

analysis is done mostly by 

hand 

Structural Decomposition 

into 3 Key Categories 

(manual), Structural Re-

composition into 1 

Representation 

Unlimited comparisons, 

show details relating to 

concepts 

SMD 

Concept Map 

or Natural 

Language 

Quantitative—analysis is 

calculated using tools 

Structural Decomposition 

into 3 Key Categories 

(manual) 

Unlimited comparisons 

MITOCAR 
Natural 

Language 

Quantitative—analysis 

included multiple 

calculations using tools 

Structural Composition 

into 1 Category 

(automatic) 

Paired comparisons for 

semantic and structural 

model distance measures 

DEEP 

Annotated 

Influence 

Diagrams 

Quantitative/Qualitative

—analysis is done mostly 

by hand 

Structural Decomposition 

into 3 Key Categories 

(automatic) 

Unlimited comparisons, 

show details relating to 

concepts 

Table 1:  Methodologies’ features and techniques comparisons. 

 

We first look at the data analysis techniques. Since each method has different techniques for data 

conversion prior to data analysis, the initial comparison among the methods will focus on the specific 

analytic techniques employed. As such, the comparisons begin with the same dataset in order to control for 

the analysis phase of each method. This involves taking a set of decomposed data from concept maps or 

natural language and the analysis techniques used in each method will be employed and the output will be 

compared.  

 

The second part compares the data conversion techniques. This involves collecting data according to 

the method specifications and then going through the process of data conversion. The converted data are 

compared for similarities and differences.  

 

For example, the application of the SMD-Technology in different subject domains and the comparison 

with other quantitative methodologies, e.g. MITOCAR (Pirnay-Dummer, 2006), or qualitative 

methodologies, e.g. ACSMM (O’Connor & Johnson, 2004) and DEEP (Spector & Koszalka, 2004), could 

cross-validate the SMD-Technology (and vice versa) and give a more detailed understanding of the 

changes of mental models within individuals and teams. 

4 Summary 

From the study of these methodologies, we hope to better qualitatively and quantitatively represent 

individual and team mental models thereby facilitating greater understanding of the notion of individual 

and team processes and the development of mental models. We hope to better understand mental model 

development by the comparison of individuals to experts.  

 
Further, by comparing the teams at various points during team processes, we should be able to 

determine how team metal models change over time. With each methodology we test the 

progression/development of conceptual representations with each other from the initial state to the post 

state and the similarity between the individually constructed conceptual representations. Not only will this 

information benefit further study in individual and team dynamics, but also if we can identify how team 

mental models change over time and find indicators of why they change, we should be able to develop 

methods for improving overall individual and team performance. 

 



 

Conducting experiments for cross validation gives us a chance to add quantitative control for 

qualitative assessment methods looking at individuals and aggregation to be used for teams. Likewise this 

type of experimentation gives us added qualitative control for quantitative assessment methods.  
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