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Abstract. The flexibility of concept mapping enables users to construct a wide range of maps for a given domain. This variation 
raises the question of what constitute “good” concept maps. This paper contributes towards answering this question by presenting 
the development and evaluation of a tool for automatic classification of concept maps based on a topological taxonomy. In 
addition to showing successful demonstrations of the tool’s ability to distinguish novice and expert maps, the paper shows the 
usefulness of the tool for understanding the types of features that occur in human-generated concept maps. 

1 Introduction 

Concept maps are an explicit graphical representation of a human’s understanding of a domain of knowledge. 
Concept maps represent this understanding by means of a two-dimensional network in which nodes correspond 
to concepts and links correspond to concept relationships. In a concept map, concepts are the labels used to refer 
to objects or events and linking phrases (the text on the links) are usually verbs (Novak & Gowin, 1984). Given 
that each person’s understanding of a domain is different, even if people construct concept maps on the same 
topic, the maps constructed by every individual are different, reflecting their personal knowledge structures. 
Concept maps differ from other graphical knowledge representation schemes in the freedom map builders have 
when selecting concepts and linking phrases, which are limited only by the constraint that concepts linked by a 
linking phrase should form a propositional sentence, a claim that “makes sense” when read separately from the 
map. This freedom results in further variation among the maps constructed on a same topic. The resulting 
flexibility is commonly regarded as an advantage of concept mapping for use in many fields, such as education, 
in which the map reflects what the student knows, and for representing the knowledge of experts, in which the 
map is used to represent the idiosyncrasies of each expert.  
 

The freedom for concept map builders results in a variety of concept maps. This variety has at times 
considered by some to be a “problem.” Computer scientists, for example, often complain about the lack of 
formality in concept maps, which makes it difficult for computer programs to “process” concept maps, where 
“processing” could be referring to performing inference on the knowledge expressed on the map, making some 
kind of decision based on the map, or trying to automatically rate or compare maps. To facilitate such 
processing, many researchers and practitioners restrict the list of concepts and/or linking phrases from which the 
map builder can select, resulting in varying degrees of “formality” in the resulting types of maps. Accepting that 
the flexibility provided by concept mapping in the selection of concepts and linking phrases makes it difficult to 
perform fully automatic analysis of concept maps, our research efforts have been aimed at the construction of 
tools that aide the user in all facets of interaction with electronic concept maps, including tools for concept map 
construction (Cañas, Hill et al., 2004), searching the Web using concept maps (Leake et al., 2004), suggesting 
concepts during map building (Cañas, Carvalho et al., 2004), categorizing documents based on concept maps 
(Valerio, Leake, & Cañas, 2007), among others.  

 
A common issue within the concept mapping community is how to “assess” concept maps. Despite the 

variety of concept maps that arise from the differences among map builders, some maps can be considered 
“better” than others, based on a variety of criteria. One concept map could show a “deeper understanding” of a 
topic than another, perhaps reflecting that the first was constructed by an expert and the second by a novice. One 
map could be considered by some to be “easier to read” than another map on the same topic. Among the features 
that can be used to assess the quality of a concept map, we can distinguish between topological features (e.g. 
hierarchical structure, linking phrases, number links into and out of concepts, etc.), and semantic features (are 
the propositions correct? how expressive are the linking phrases? is the focus question answered by the concept 
map?). Of course, the semantic content is always more important than the topological structure, but just as in the 
English language a well structured sentence is considered to be better written than a badly structured sentence, 
even if their content is the same, a “well structured” concept map is considered better than a badly structured 
map, even if their contents are “equivalent.” There seems to be some agreement among concept mapping 
“experts” regarding some of the characteristics of a “well structured” concept map, even they only get a 
“glance” at them (Carvajal, Cañas, Carballeda, & Hurtado, 2006). 



 

In this paper we report on an effort to automatically classify concept maps based on topological features. 
Clearly a classification based on topological features is not the automatic assessment rubric that teachers often 
look for to automatically assess their students’ concept maps; we are certainly not attempting to assign an 
“absolute score” for a map. This work makes three primary contributions: (1) the development and validation of 
a tool for automatic classification of maps based on a topological taxonomy, (2) development and validation of 
models of well-constructed concept maps that can be used to facilitate automatic construction of concept maps 
(Valerio et al., 2007), and (3) the refinement of previous models used for automatic concept mapping support, 
e.g. the concept Suggester (Cañas, Carvalho et al., 2004). The tool can integrate a broader environment to study 
the evolution of individual student concept maps in time, to determine how these maps change as the student 
progresses in both understanding the subject matter and developing skills for constructing concept maps. 

2 Topological taxonomy classification and feature annotations 

Recent research studies the topological properties of concept maps. (Novak & Cañas, 2006) describe guidelines 
for concept map construction and identify a list of features that well constructed maps commonly have. Further 
study resulted in the development of a topological taxonomy for concept maps (Cañas, Novak et al., 2006) 
based on these features. The taxonomy is intended as a tool to estimate the quality of human-made concept maps 
based on their structural complexity. It has been successfully used as an evaluation tool for “Proyecto Conéctate 
al Conocimiento” in Panama (Tarté, 2006) as part of a larger scheme to measure the impact of concept mapping 
in education. In the context of automatic support of concept mapping tasks, other structural features were 
identified: High-value concepts in maps, used for searching the Web (Leake et al., 2004), and concept 
descriptors and discriminators used to describe the topic of a map (Maguitman, 2005), and to associate 
document libraries to concepts (Reichherzer & Leake, 2006). 
 

Based on the topological taxonomy and other features used in earlier research, we developed a set of 
algorithms to automatically classify electronic concept maps by their topological category and make annotations 
of structural features. As described in Section 5, the tools can be used to efficiently annotate large collections of 
human-built concept maps and assist on quantitative analyses of their structure. If accurate, these tools can also 
be used to support other concept mapping tasks, for example aiding users by suggesting structural changes to a 
map under construction. 

 
This section describes the feature annotation algorithms in detail. Most algorithms are based on 

combinations of previously published work, with some notation changed to have a uniform description. The 
algorithms make two kinds of annotations: map level and node level annotations. The annotations could be 
absolute counts (e.g., the total number of concepts) or scores (e.g., hub and authority scores of nodes in the 
concept map graph). All score annotations are normalized in the range [0, 1]. 

2.1 Topological taxonomy of maps 

The topological taxonomy (Cañas, Novak et al., 2006; Miller, 2008) classifies concept maps into seven levels of 
increasing structural complexity. In the taxonomy, a map is represented by five features known to be good 
descriptors of concept map structure: the existence of hierarchical structure, size of concept labels, presence of 
linking phrases, number of branching points, and number of cross links. Values for these features determine the 
level of complexity. 

 
To determine the topological class of a map, our automatic topological classifier executes the following 

procedure: In an iterative process which starts from Level 0, if the map belongs to Level N, check if it belongs to 
Level N+1 until the topmost Level 6 is reached. If during the sequential checking the map fails one of the 
conditions of Level N, then classify the map as Level N-1. Table 1 describes the conditions evaluated by the 
classifier at each level of the taxonomy. As described in later sections, the tool could be used to analyze large 
sets of maps. Because some of these maps might be under construction or too small for analysis, consequently 
not satisfying conditions for any level, for completeness the table introduces a Level -1 to label to such maps.  

2.2 Root concept 

Structurally, a concept map is a directed graph of concept and linking phrase nodes. The root concept of a map 
is defined as “the most general and most inclusive concept” (Novak & Cañas, 2006) and is considered the head 
of the concept map hierarchy, from which all other nodes can be reached though some path. The root is 
commonly found in the topmost vertical position. 



 

 
Previous work on automatic concept map processing describes different methods to discover the root 

concept. In Cañas et al. (2001) the root is the concept with the highest upper node score; a measure to 
characterize concepts that appear in the top of a tree hierarchy. For most concept maps, the upper node score 
(described later on) can be used as an accurate estimator for the root concept, but due to its recursive definition 
it assigns the root a very low value when a concept in the lower levels of the tree has a cross link to the root. 
Another definition of root concept is used in Reichherzer & Leake (2006), where the root is the node with the 
highest value of , however it assigns the root using only limited information 

about the structure of the map. These definitions are independent of two features that can help find the root more 
accurately: the “outreach” of the concept (the number of concepts that can be reached though some path starting 
on the node) and the relative vertical position of the concept. 
 
Level # Conditions by level as indicated in 

Cañas, Novak et al. (2006) 

Conditions evaluated by to classify concept map M, which 

has concept c and linking phrase l the as nodes of M. 

Level -1 No conditions (default) 
Level 0 At least 4 connected concepts  

 Mostly long concept labels (default) 
 Empty linking-phrases  (default) 
 0 to 1 branching points (default) 
Level 1 More concepts than long concept labels   

 Half or more missing linking-phrases (default) 
 0 to 1 branching points (default) 
Level 2 More concepts than long concept labels (checked at Level 1) 
 Less than half missing linking-phrases  

 At least 2 branching points  

Level 3 No long concept labels   

 No linking-phrases missing   

 At least 3 branching points   

 Less than 3 hierarchy levels (default) 
Level 4 No long concept labels  (checked at Level 3) 
 No linking-phrases missing (checked at Level 3) 
 At least 5 branching points  

 At least 3 hierarchy levels  

Level 5 No long concept labels  (checked at Level 3) 
 No linking-phrases missing  (checked at Level 3) 
 At least 5 branching points  (checked at Level 4) 
 At least 3 hierarchy levels  (checked at Level 4) 
 At least 1 cross-link  

Level 6 No long concept labels  (checked at Level 3) 
 No linking-phrases missing  (checked at Level 3) 
 At least 7 branching points   

 At least 3 hierarchy levels (checked at Level 4) 
 At least 3 cross-links  

Conditions labeled with (default) are met if the map fails a condition of a following level. 
Conditions labeled with (checked at Level N) are revised at a previous level. 

Table 1: Required conditions for the levels of the topology classifier. 

In the approach of developed in this paper, the root concept score is defined as a linear combination of the 
four features mentioned above. The root concept of a map M is: 

Currently, the values of  are 0.1, 0.16, 0.37, 0.37 respectively, which are the best-fit parameters 

for a small training set of concept maps manually marked with the root concept. 

2.3 Cross-links and Cycles in the concept map graph 

Safayeni et al. (2005) studied the presence of cross-links and cycles in concept maps as indicators of a rich 
structure and examined their importance in educational settings. According to Novak & Cañas (2006), a cross 
link is “a link between concepts in different segments or domains of the concept map.” For the purposes of our 
algorithm, a link between two concepts is a cross link if they belong to two different branches of the concept 



 

map hierarchy, defined as follows. Concepts A and B are in two different branches if the shortest path from A to 
the root node  does not share more than K nodes with the path of B ; in other words, the 

closest common ancestor of A and B is at least at distance K. This guarantees enough separation between the two 
concepts for which a cross link is found. In the algorithm implementation K was set to 5. 

 
A cycle in a concept map is as defined for directed graphs: it is a path of size more than 1 that starts and 

ends with the same node. The definition is simple, but an algorithm to find all cycles in an arbitrary concept map 
can be computationally expensive for large graphs. Fortunately, concept map graphs are relatively small. 

2.4 Hub, Authority, and Upper concepts 

The definition of hub, authority and upper concepts was introduced in Cañas, Leake, & Maguitman (2001) in 
the context of automatic support for human concept mapping tasks. These serve as features to help find high 
value concepts in a concept map graph, which can be used in interactive concept suggesters (Cañas, Carvalho et 

al., 2004) or automatic identification of terms that describe the topic of a concept map (Maguitman, 2005). 
 
We are interested in calculating the scores for concept nodes only, so we take the full concept map graph 

 and define a new graph  – the concept-to-concept graph of map M – as: 

, , and . 

 
The hub and authority scores for concepts in the graph  are calculated by a mutually recursive definition, 

originally described in Kleinberg (1999): 
 and  

maintaining the constant  

 
The upper node score for the concepts in graph  is calculated by a recursive definition as well: 

 

2.5 Lower level features 

The features described previously are defined in terms of simpler lower level characteristics defined as follows: 
• Node label size: The size of a node label is the number of terms separated by whitespace characters. Some 

maps have concepts that are connected directly without a linking phrase. In this case, an artificial linking 
phrase is created with an empty label. 

• Concept depth value: The depth of a concept in a map is the length of the shortest path from the root 
concept to the node. The depth of the root concept is 0. 

• Branching points in a map: A branching point is a concept or linking phrase node with more than one 
outgoing link. 

• Outgoing reach concept score: The outgoing reach score of a concept c is based on the number of 
concepts that can be reached by walking the map graph exhaustively starting from c. The scores of all 
concepts in a map are normalized in the range [0,1]. 

• Outgoing concept score: Measures the local output connectivity of a concept. The outgoing score of a 
concept is the normalized value of . 

• Vertical position concept score: Assigns a linear score based on the relative vertical position of the 
concept in the concept map layout; giving the topmost concept a score of 1 and the bottommost position a 0.  

• Number of concept map resources: Electronic concept maps can be annotated with multimedia resources 
and with topically related concept maps. These attached resources could be: concept maps, documents, 
images, or videos. A simple count is taken for each type. 

3 Validation of the automatic topological taxonomy classifier 

The topological taxonomy classifier was used to segment a collection of human made concept maps, to study 
the characteristics of maps on each topology level. In order to assess the classifier’s performance, an 
independent categorization of the maps was needed. Consequently, the algorithm was validated using a 



 

preclassified set of concept maps as testing set. The set contained maps of two major categories: (1) expert 
concept maps: 180 maps built by concept mapping experts; these include STORM-LK (Hoffman, Coffey, Ford, 
& Carnot, 2001), Mars 2001 (Briggs et al., 2004), and the concept maps in the CmapTools website1; and (2) 
novice concept maps: 108 maps selected manually from a public repository showing different construction 
deficiencies as described in Novak & Cañas (2006). 

 
Table 2 presents the result for the classification by the topology classifier. Ideally, all expert concept maps 

would be classified in the higher levels of the hierarchy and all novice maps in the lower levels. The results 
show that 93% of the expert maps were classified in Levels 4, 5 and 6, while 88% of novice maps were 
classified in levels 1, 2 and 3, confirming the accuracy of the classifier. The maps on the “expert” set were not 
manually inspected to verify that all belong to the highest levels of the taxonomy, therefore some noise may be 
present in this set which can be consistent with relatively few misclassifications. 

 

 

 Storm LK Mars 2001 CmapTools site Novice 

 number % number % number % number % 

Level-1 0 0% 0 0% 0 0% 0 0% 

Level 0 0 0% 0 0% 0 0% 0 0% 

Level 1 0 0% 0 0% 0 0% 13 12% 

Level 2 0 0% 3 2% 0 0% 23 21% 

Level 3 2 8% 6 5% 1 3% 59 55% 

Level 4 6 23% 38 31% 5 16% 10 9% 

Level 5 9 35% 54 44% 11 35% 0 0% 

Level 6 9 35% 22 18% 14 45% 3 3%  

Table 2: Performance of taxonomy classifier on the test set. 

The topological taxonomy definition described in Cañas, Novak et al. (2006) considers mostly structural 
characteristics of concept maps to decide their levels. It is unclear if structural features alone are sufficient to 
achieve accurate classification. Content features could also be explored as additional information about the map 
to improve the classification performance. Some of these features have been successfully used for other concept 
mapping tasks, for example to find good descriptor and discriminator terms for the topic of a map (Maguitman, 
2005). A semantic rubric has been developed as part of the Conéctate project, which could be evaluated for 
incorporation into this tool (Miller & Cañas, 2008). 

4 Selection, cleanup, and processing of human built concept maps 

The second major goal of this work is to analyze the composition of human-made concept maps through an 
empirical study. Three main sources of concept maps were selected: (1) the 180 expert knowledge maps used 
during the validation procedure described in Section 3, (2) 8018 maps from the public CmapServer2 (Cañas, Hill 
et al., 2004) IHMC Public Cmaps (3)’s Users directory, and (3) 13,287 maps from the public Conéctate Público 

(Panama) public CmapServer, which mostly correspond to the “Who Am I?” maps of the project (Sánchez et 
al., 2008). The maps were crawled from the CmapServers using KEA (Cañas, Hill et al., 2006) and downloaded 
into a local repository to simplify their processing. 

 
Before processing, each map was cleaned to remove concepts that were not connected to the main map. 

These floating concepts are frequently used to record the focus question of the map and are not considered part 
of the concept map itself. Occasionally, the author of the map can introduce noise to the concept map graph 
during map generation, especially by accidentally reversing the direction a link between concepts. These errors 
are difficult to detect and introduce noise that could affect the performance of the algorithms. 

 
After the clean up step, each map is processed individually and all annotations described in Section 2 are 

made. Finally, the maps are split by levels using the topological taxonomy classifier and grouped by level to 
gather the aggregated information. 

                                                 
1 These knowledge models can be accessed at: 
http://cmapskm.ihmc.us/servlet/SBReadResourceServlet?rid=1103742096094_178662418_7950&partName=htmltext, http://cmex.ihmc.us, 
and http://cmap.ihmc.us. 
2 A “public” CmapServer is one on which anyone can store concept maps using the CmapTools client, and therefore there is no ‘control’ or 
filter on the quality or type of maps stored. The two public CmapServers used in this study can be accessed at: http://cmapspublic3.ihmc.us, 
and http://cmapspublico.conectate.edu.pa. 



 

5 Characteristics of human built concept maps 

This section presents the results of processing maps aggregated by levels of the topological taxonomy. Table 3 
presents the distribution of concept maps into topology categories grouped by source. As described in Section 4, 
the “Expert” category includes all maps from “STORM-LK”, “Mars 2001”, and “CmapTools documentation 
maps”. We observe that most expert maps are classified in the high level of the taxonomy. Also, the maps from 
the “Conéctate” project have substantially better classifications than the maps from IHMC Public Cmaps 

(3)/Users server and this result could reflect the impact of the concept mapping workshops in Conéctate. 
 

 

 Expert IHMC Public3 
Conéctate 

Público 

 number % number % number % 

Level-1 0 0% 1026 13% 823 6% 

Level 0 0 0% 0 0% 0 0% 

Level 1 0 0% 1609 20% 1424 11% 

Level 2 3 2% 1600 20% 1668 13% 

Level 3 9 5% 1444 18% 4093 31% 

Level 4 49 27% 1327 17% 3447 26% 

Level 5 74 41% 594 7% 1388 10% 

Level 6 45 25% 418 5% 444 3%  

Table 3: Distribution of maps in taxonomy levels grouped by source 

The following tables present variables from maps correlated with their topological taxonomy level. These 
were obtained by the annotations described in Section 2. Each variable is represented by its average (AVG) 
normalized by the size of the map and the root mean square error (RMSE) is reported as the standard deviation. 
All maps from the three sources were combined to get information about the aggregated data. 

 
Table 4 presents the number of cycles and crosslinks by category, where the Levels 5 and 6 show a higher 

number of these features. The variance of the number of cycles at Level 6 is surprisingly high possibly 
indicating the existence of a small number of maps with very high connectivity. 

 
 
 

 AVG RMSE 

Level 0 0.0 0.0 

Level 1 0.1 1.1 

Level 2 0.2 1.5 

Level 3 0.1 0.9 

Level 4 0.0 0.2 

Level 5 0.4 1.5 

Level 6 1.4 4.0  

 
 AVG RMSE 

Level 0 0.0 0.0 

Level 1 0.0 0.3 

Level 2 0.3 1.1 

Level 3 0.2 0.7 

Level 4 0.0 0.0 

Level 5 1.5 0.8 

Level 6 5.5 4.2 

 
 

Table 4: Average number of cycles and crosslinks per category. 

Table 5 shows the average vertical position of the root node in the concept map layout. It shows that 
regardless of the level it is consistently positioned in the topmost part of the map. 

 
 

 
 

 AVG RMSE 

Level 0 0.00 0.00 

Level 1 0.90 0.22 

Level 2 0.91 0.18 

Level 3 0.89 0.19 

Level 4 0.89 0.17 

Level 5 0.89 0.16 

Level 6 0.90 0.17 

 
 
 
 

Table 5: Average vertical position of the root node in a map layout. 



 

Table 6 shows the distribution of hub and authority concepts. The number of authority nodes is consistently 
higher than the hub nodes, reflecting the hierarchical structure of concept maps. Also, the proportion of 
authorities to hubs decreases on Levels 5 and 6, due to cycles and crosslinks from the lower nodes of the map to 
higher nodes.  
 

 

 # hub concepts 
# authority 
concepts 

 AVG RMSE AVG RMSE 

Level 0 0.0 0.0 0.0 0.0 

Level 1 1.7 2.3 4.7 3.6 

Level 2 1.5 1.3 6.5 4.0 

Level 3 1.4 1.2 9.1 5.5 

Level 4 1.5 1.3 9.9 5.6 

Level 5 1.7 1.4 9.6 5.7 

Level 6 2.4 2.0 8.5 5.4  

Table 6: Distribution of hub and authority nodes by category. 

Table 7 shows the distribution of resources per category, which illustrate the increasing number of attached 
resources as the structure of the map improves. This indicates that authors of more structurally refined maps also 
refine their maps with more resources and suggest that these maps may be part of a more complex knowledge 
model. 

 

 

 Concept maps Documents Images Videos 

 AVG RMSE AVG RMSE AVG RMSE AVG RMSE 

Level 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Level 1 0.5 8.2 0.1 1.2 0.2 1.2 0.0 0.1 

Level 2 0.3 1.3 0.3 2.5 0.3 1.6 0.0 0.1 

Level 3 0.2 1.2 0.2 1.6 0.6 2.0 0.0 0.3 

Level 4 0.7 3.5 0.4 2.7 1.1 3.1 0.0 0.3 

Level 5 1.0 3.3 0.8 3.4 1.5 3.4 0.0 0.5 

Level 6 1.5 4.9 1.4 6.1 1.8 5.0 0.1 0.6  

Table 7: Number of attached resources by category 

6 Summary and Future work 

In this paper, we present the construction and validation of an automatic classifier of concept maps based on its 
topology along with a suite of annotators to help analyze concept map topological features. The classifier and 
annotators were applied to a collection of human built concept maps to identify the structural composition of 
real-life concept maps. 

 
Further work needs to be done to refine the existing methods to go beyond structural information, bringing 

in semantic considerations to extend existing models of well constructed concept maps. Also, we foresee the use 
of the implemented classifier as the basis for a tool to study the evolution of individual concept maps in time by 
comparing a sequence of snapshots in time through periodic crawling. 

 
In addition, starting from a collection of concept maps annotated with information on concept map quality, 

the annotators could be used as the basis for a bottom-up analysis of which features are most important for 
assessing concept map quality, potentially providing more refined assessment methods. 
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