
Concept Maps: Theory, Methodology, Technology
Proc. of the Fifth Int. Conference on Concept Mapping

Valletta, Malta 2012

AUTOMATED CONCEPT MAP GENERATION FROM SERVICE-ORIENTED ARCHITECTURE
ARTIFACTS

John W. Coffey, Thomas Reichherzer, Bernd Owsnick-Klewe, and Norman Wilde,
The University of West Florida, Pensacola, FL. USA

Email: {jcoffey | treichherzer | bowsnickiklewe | nwilde @uwf.edu}

Abstract. This article contains a description of the first phase of a two-phase project in computer program understanding for
Service-oriented Architecture (SOA) composite applications. The first phase, which is described here, pertains to development of
CARET, a prototype software tool that automates the process of generating concept maps that pertain to the structure of
composite applications. CARET produces triples describing the relationships of entities contained in WSDL, BPEL, and XML
Schema files. The triples can be imported into CmapTools, where they are automatically rendered into a concept map. The tool is
programmatically extensible to capture any relationships of interest in such systems. In the second phase, to be reported in future
work, the concept maps created in this fashion will be augmented with knowledge elicited from experts in the software system
being modeled.

1 Introduction

Well-structured concept maps provide clear concise representations of conceptual knowledge. Although the vast
majority of work on concept map creation pertains to those created by humans, some studies contain
descriptions of machine-generated maps. This article describes work on the first part of a two-part process of
automatically generating concept maps that identify and visualize relationships in complex artifacts of Service-
oriented Architecture (SOA) composite applications and then augmenting these concept maps with domain
knowledge of the software elicited from human experts. The end goal of the work is to foster understanding of
SOA applications through these constructed knowledge models. This paper reports results on the first phase
(automated concept map generation) of this process.

This work is motivated by the rapidly increasing use of Web Services and SOA to tie together
heterogeneous networked software systems. The exceptional complexity of the documents that specify and
orchestrate SOA applications makes these software systems difficult to understand. Separate XML
specifications are used to describe Web service interfaces (WSDL), data types (XML Schema), and composite
application processes (BPEL). Understanding how all the pieces fit together is a significant challenge for

software maintainers. It is, however, feasible to extract {concept → linking phrase → concept} triples from
these documents that explicitly summarize important relationships among them. These triples can be imported
into a tool such as CmapTools (Cañas et al, 2004) in order to represent the relationships they convey as concept
maps.

The remainder of this article contains a description of a system for the automated generation of concept
maps from XML documents (WSDLs, XML Schemas, and BPELs) that describe composite applications
executing in a Service-oriented Architecture. Following a review of relevant literature on the automated
generation of concept maps and on conceptual models of composite applications residing in Service- oriented
Architectures, the paper presents a description of CARET: Composite Application Reverse Engineering Tool.
After a basic discussion of the way in which the tool is used, a case study pertaining to a medium-sized
composite application is presented. The case study includes a description of a concept map that was
automatically generated with CARET and populated with accompanying resources. The paper concludes with
an analysis of the benefits and drawbacks of the approach, and a description of future work.

2 Automated Generation of Concept Maps

RDF and OWL are Semantic Web markup languages that are difficult for humans to understand. Eskridge and
Hayes (2006) describe a plug-in to CmapTools named COE that allows the automatic generation of concept
maps from RDF and OWL ontologies and OWL/RDF ontologies from concept maps. The goal of their work is
to foster human understanding of these complex artifacts while retaining the formal properties of the
descriptions. For this reason, the set of linking phrases is constrained to those in the OWL and RDF
vocabularies. Graudina and Grundspenkis (2008) also described a tool that supported this task. Their
contribution was identifying a general algorithm for the transformation of ontologies in any format into concept
maps.

Richardson, Goertzel, and Fox (2006) have developed a tool named Relex that produces concept maps from
text. The system they produced creates graphs of semantic primitives (Wierzbicka, 2006) extracted from
syntactic dependencies. Relex requires domain-specific vocabularies, necessitating a lexicon of relevant terms.
The work they performed was in the area of electronic theses and dissertations pertaining to computer science,
which involves inherently large documents.

Work has also been done on the automated transformation of concept maps into other formalisms. For
example, Gomez, Diaz-Agudo, and Gonzalez-Calero (2004) describe the transformation of concept maps into
description logics. Leake, Maguitman, and Reichherzer (2004) describe the extraction of concepts from concept
maps and the transformation of those concepts into queries that can be executed by a Web-based search engine.
Cabral and Goncalves (2006) describe software that transforms concept maps into SCORM-compliant learning
objects, and represented in another XML vocabulary.

Although not directly related to the automatic generation of concept maps, the idea of building
understandings with “expert skeleton” concept maps put forth by Novak and Cañas (2004) is also relevant to the
current work and briefly discussed here. Novak and Cañas state that expert skeleton maps provide a strong
foundation for learning and that they create a context in which additional concepts and propositions may be
added. This principle applies regardless of whether the concept maps are generated by humans or by automated
means. Ideas in the work on expert skeleton maps are relevant to knowledge modeling for the understanding of
SOA, the topic of the next section.

3 Knowledge Modeling for the Reverse Engineering of Software

Canfora, Di Penta, and Cerulo (2011) claim that "Radical innovations are needed to cope with new and
emerging software development scenarios and new system architectures (p. 151)." They cite Chikofsky and
Cross' (1990) seminal work which defined the problem of reverse engineering software as the creation of
representations of the structure and function of software that are useful to humans from available software
"artifacts." The word artifact was meant to include internal and external documentation of source and target
code, as well as the code itself.

As suggested by Canfora, Di Penta, and Cerulo, a primary goal of reverse engineering is the creation of
architectural models of software that support specific maintenance tasks. The prevailing approach to this end
relies upon the evaluation of source code and documentation. The literature includes descriptions of a number of
tools and methods that serve this goal. What is less clear in the literature is how to perform this task on the
complex artifacts comprising SOA applications and how to incorporate less tangible conceptual knowledge that
might provide significant insights into the software, including design rationale or undocumented features.

A substantial body of work exists on the idea of knowledge capture, preservation and sharing through the
creation of knowledge models based upon the elicited conceptual knowledge of experts (Ford, Cañas, and
Coffey, 1993; Cañas et al, 1996; Coffey, et. al., 2003). One approach involves interactive elicitation of concept
maps (Novak and Gowin, 1984) which are concise representations of propositional knowledge. Propositions are
triples involving two concepts and a linking phrase that describes the relationship between the concepts:

<concept> <linkingPhrase> <concept>

For instance, “automobiles are powered by engines” is a proposition comprised of the concepts
“automobiles” and “engines” and the linking phrase “are powered by.” Hierarchically structured groups of
concept maps can be populated with other electronic resources to form conceptual or knowledge models (eg:
Coffey, Hoffman, and Novak, 2010) pertaining to some body of knowledge.

Figure 1. A Knowledge Model with concept map and related resources.

Figure 1 contains an illustration of components of a Web-based knowledge model that pertains to AJAX
(Asynchronous JavaScript and XML, a group of technologies used to create interactive websites). The top-most
window is a concept map that has been enhanced with links indicated by the icons below the concepts (the
rounded rectangles in the maps) in some of the nodes. The icons provide access to pull-down menus that afford
navigation to associated electronic resources. Figure 1 might arise from a scenario in which the user first
navigated into the AJAX concept map from a more general concept map, perhaps on the subject of the
JavaScript programming language. From the AJAX map, the user clicked on a link pertaining to AJAX tools to
access the dojo Toolkit website, an “Interactive Website Framework” form Source Forge, and a page that
pertains to AJAX design patterns. Knowledge models such as this one have been created in numerous
knowledge domains (Coffey, et al. (2003); Coffey, Hoffman, & Novak, (2010)).

A fundamental purpose of CARET is to automate the creation of concept maps that provide a basic
structure for the creation of knowledge models pertaining to SOA composite applications. CARET evaluates
named entities described in BPEL, WSDL, and XML Schema files for a specific SOA composite application
and provides input for a program that creates concept maps from triples. CARET produces all information
needed to produce a hierarchically-structured “skeleton knowledge model,” a structured representation of
several skeleton concept maps. These concept maps may be elaborated with elicited expert knowledge, and
augmented with additional electronic resources including the original WSDL, BPEL and XML Schema files that
were abstracted to form the maps. The elicited expert knowledge helps to address the issue of identifying design
rationale and other important but non-obvious knowledge pertaining to the software.

4 Overview of Service-Oriented Architectures and Maintenance Problems

Service-oriented Architectures offer the prospect of creating multi-platform software out of heterogeneous
services executing on the Internet. A composite application is typically comprised of several service components
that may be internal or external to the organization constructing it. Each service component has interface
descriptions that facilitate interoperability among the set of services in a SOA composite application. The
descriptions follow a set of standard languages for building and deploying Web Services including Web
Services Description Language (WSDL) for service interfaces, XML Schema Definition (XSD) for service data

types, SOAP for message formatting, HTTP for message exchange, and Business Process Execution Language
(BPEL) for service orchestration code. Together, service descriptions, code, and execution hardware form a
complex system of systems that is difficult to comprehend.

Any maintenance task on such a composite system requires an in-depth understanding of its service
components, the operations they perform, and the data they exchange. This includes knowledge of the service
descriptions and the dependencies among the services within the composite. CARETs goal is to provide
maintainers with a high-level description of service components, their operations and dependencies for a
selected composite application.

5 CARET

CARET, Composite Application Reverse Engineering Tool, is a tool for the semi-automated creation of
knowledge models of composite applications. CARET is based upon a SAX parser for XML files that allows it
to react to individual elements and attributes that are of interest to the parser, without having to build a DOM
tree in RAM. This feature ensures that the processing of large files, typical of those encountered in SOA
systems, will be feasible.

When the current version of CARET executes, it processes the contents of a folder that contains files
describing composite applications: the BPELs, WSDLs, and XML Schemas. These files will have been gathered
into the target folder by other software that is currently in development and that preserves the locations of the
original files. The user can select to process an entire composite application comprised of BPELs, WSDLs, and
XML Schemas, the BPEL and WSDL components only, or WSDL and XML Schema components only. This
feature enables the user to generate a more focused or a comprehensive view depending upon the kinds of
information that is currently of interest. Additionally, the user can choose to create a single global concept map
of the entire application, or to generate separate descriptions corresponding to individual BPELs, WSDLs, or
XSDs that will ultimately become more detailed parts of the conceptual model. Figure 2 contains a graphic of
the current interface to CARET.

Figure 2. The interface to CARET.

When the program starts it analyzes the available BPEL or WSDL files, depending on the choice made in

the “Files to Process” portion of the dialog. If the user has chosen to analyze BPEL files, dependencies based
upon receive-reply and invoke operations are noted. These dependencies enable the system to infer the main and
subordinate processes, to record the individual operations that are invoked, received, or replied to, and to link
together references to them in BPELs and WSDLs. This set is recorded so that operations described in the
WSDLs that are not used in the current composite are excluded from the current conceptual model. If the user
has chosen to analyze WSDLs and XML Schemas only, the system makes note of the operations in the WSDLs
and their links to local or XML Schema-based data definitions. In this case, all operations defined in the WSDLs
are documented.

As the BPEL pre-processing proceeds, all referenced WSDL files are dynamically added to a list of files to
be processed. As they are processed, following the scanning of the BPELs, their internal and external data
declarations are analyzed. Any XML Schema files that are referenced in the WSDLs are added to a dynamically
generated list of files to process. CARET is comprised of three SAX parsers, one for BPEL files, one for WSDL
files, and one for XML Schemas. This division creates a context that allows for localization of operations
specific to one type of file, even in the event that the operation is processing an element name that means
different things in different contexts. It also allows for relatively simple programmatic extension of the parsers
as other features of interest are identified for inclusion in the models to be generated. The output of CARET is a
set of triples typically of the form illustrated in Table 1.

Concept Link Concept
<filename>

<linkingPhrase> <object>

<object> <linkingPhrase> <filename>

Table 1: CARET Triple Representation.

In the triple representation, <object> might be another file, an operation name, a data element, or other

item of interest. The <linkingPhrase> includes items such as “is defined in,” “has invoke
operation,” “has receive operation,” etc. The triples are tab-delimited which allows them to
be imported into CmapTools which is used to create the conceptual model. For example the triple:

SMSFamilyModeling.wsdl→defines operation→BoundryUpdate

is of the first format indicating that the file named SMSFamilyModeling.wsdl defines an operation named
BoundaryUpdate. In this case, the object is a method rather than data or something else.

CARET produces as output one or more files of triples. If no separate file output is specified in the

interface, a single file of triples relating features of some combination of the BPELs, WSDLs and XML
Schemas (as specified in the “Files to Process” part of the CARET dialog) is created. If the user has additionally
selected to output individual WSDL files or other files, separate files of triples are produced that allow for the
creation of a hierarchical model with a single concept map at the root of the hierarchy, and additional, more
detailed concept maps that can be linked to it.

The single item at the top of the hierarchy is a global view and additional items at lower levels comprise

additional details of the WSDLs and XSDs in the composite application. All of the components the user
specifies are available for import into CmapTools. The user can pick and choose which to include in the
skeleton knowledge model. Once one or more triple files have been loaded into CmapTools, many capabilities
are available that enable the user to tailor the model to current needs.

The individual files of triples are manually imported into CmapTools where they can be arranged in any

manner that the user wishes. An “auto-layout” feature is available that creates alternative arrangements of the
graphical depictions. The model is editable and can be enhanced with other electronic resources or with
knowledge of the artifacts that participants in the process might know. A mature body of literature exists
regarding the process of eliciting conceptual knowledge from an expert with concept maps. CmapTools provides
a simple-to-use mechanism to create links among the graphical depictions of program structure, and the actual
files to which the nodes in the map relate. The files that have been analyzed can be associated with their
representations in the conceptual model by a simple drag-and-drop process to create a comprehensive
knowledge model.

6 A Case Study

A case study in the use of CARET is described in this section. It is based upon a "Web Auto Parts" composite
application comprised of two BPEL files, five WSDL files, and two XML Schema files (Wilde, Coffey,
Reichherzer and White, 2012). Web Auto Parts is a hypothetical startup online automobile parts store which
uses Business Process Execution Language to orchestrate services provided by commercial vendors such as
Amazon. In this study, the full BPEL composite application is recovered. The Web Auto Parts application is
comprised of the files depicted in Table 2.

OrderProcessing.bpel OrderProcessingArtifacts.wsdl

PurchaseOrder.xsd QueueService.wsdl

TaxDataBasic5.wsdl InventoryRepository.bpel

InventoryRepositoryArtifacts.wsdl InventoryQuery.xsd

AmazonSimpleDB.wsdl

Table 2: Resource files of the Web Auto Parts composite application.

These files comprise a composite application that allows the user to request a check on availability of a

selection of items with Amazon, to form an order, compute tax and shipping charges for the order, and to
receive a reply regarding success or failure to complete the transaction. The composite application is comprised
of a combination of both internal and external services. No global view of the composite application was
available. The triples for the concept map in Figure 3 were generated automatically by the process described in
the previous section.

Figure 3. A Conceptual Model of the Web Auto Parts Composite Application.

As can be seen in Figure 3, the OrderProcessing BPEL (the main method in the composite

application) has an invoke operation on the CheckInventory service and the InventoryRepository
BPEL has receive and reply operations on the same service. Making explicit caller-callee relationships
such as this one is an important abstraction afforded by CARET. It can also be readily seen that the
OrderProcessing composite application utilizes four other services, putAttributes,

GetTaxRateUS, SendMessage, and GetUSPSRate. The WSDLs in which these services are defined

and the locations of their data structures are all made evident by the generated concept map. Also, as can be seen
in Figure 3, the actual BPEL, WSDL, and XSD files have been made available as linked documents (indicated
by the icons under the appropriate nodes in the concept map).

In the current case study, a total of 43 operations (individual Web Services) were made available through

the five included WSDLs. Of that total, seven services were utilized in the Web Auto Parts Composite
Application. CARET filtered out references to irrelevant services - those that were not utilized in the current
composite application. The seven services that were invoked may be viewed across the middle of Figure 3. If
the BPEL utilized different services, CARET would generate a different conceptual model for that composite
application, even though it was based upon the same WSDLs and XML Schemas.

7 Conclusions

This article contains a description of CARET, a prototype tool that detects items of interest to maintainers who
are trying to understand the structure of SOA-based composite applications. CARET is used to process artifacts
of BPEL and WSDL-based composite applications to produce triples that can be imported into CmapTools.
CmapTools automatically renders them in one or more concept maps. The concept maps can be ordered
hierarchically from more general to more detailed to form what has been called a knowledge model of the
software system. These knowledge models may be augmented with the original files that were processed by
CARET, any other documentation pertaining to the system, and additional conceptual knowledge elicited from
people who are knowledgeable in the workings of the system.

One of the compelling ideas in this approach is the capability to provide a minimal, comprehensible
overview of a complex system using a set of machine representations that describe it. The approach of
combining structural knowledge of a composite application that can be generated automatically from the
processing of input that CARET performs with expert human knowledge of the system provides greater support
for system understanding than can be garnered from standard reverse-engineering tools. The modeling of
heterogeneous artifacts is supported in a way that has been shown to be intuitive to people trying to answer
questions pertaining to a domain of knowledge (Carnot et al, 2001).

Future work includes empirical exploration of additional conceptual relationships that are of value to

maintainers of SOA-based systems. These relationships can be captured by extending the SAX parser upon
which the system is based. Encoding a characterization of individual triples and storage in a database will afford
the capability to construct varying views of the various components of a composite application dynamically.
Future work will also address the benefits of augmenting the knowledge model with elicited expert knowledge.

8 Acknowledgement

Work described in this paper was partially supported by the University of West Florida Foundation under the
Nystul Eminent Scholar Endowment.

9 References

Cabral, A., & Goncalves, L. (2006). SCORM Standard Compliant Learning Objects Generated from Content
Organized with Concept Maps. In: A. J. Cañas & J. D. Novak (Eds.), Concept Maps: Theory,
Methodology, Technology. Proceedings of the Second International Conference on Concept Mapping. San
José, Costa Rica: Universidad de Costa Rica, pp. 519-526.

Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Eskridge, T., Gómez, G., Arroyo, M., Carvajal, R. (2004).
CmapTools: A Knowledge Modeling and Sharing Environment. In A. J. Cañas, J. D. Novak & F. M.
González (Eds.), Concept Maps: Theory, Methodology, Technology, Proceedings of the First International
Conference on Concept Mapping, Universidad Pública de Navarra: Pamplona, Spain. p. 125-133.

Cañas, A. J., Ford, K.M., Brennan, J., Reichherzer, T., Hayes, P., & Suri, N. (1996). An Environment for the
Construction and Sharing of Knowledge, Proceedings of the Ninth Florida Artificial Intelligence Research
Symposium, Key West, FL (May 1996).

Canfora, G., Di Penta, M., & Cerulo L. (2011). Achievements and Challenges in Software Reverse Engineering
Communications of the ACM 54(4) pp. 142-151. doi :10.1145/1924421.1924451

Carnot, M. J., Dunn, B., and Cañas, A.J. (2001). Concept Map-based vs. Web Page-based Interfaces in Search
and Browsing, ICTE 2001: International Conference on Technology and Education, Tallahassee, FL
(May). (extended version available as: http://www.ihmc.us/users/acanas/Publications/
CMapsVSWebPagesExp1/CMapsVSWebPagesExp1.htm)

Chikofsky, E., & Cross, J.I. (1990). Reverse engineering and design recovery: A taxonomy. IEEE Software 7(1)
pp. 13–17.

Coffey, J.W., Cañas, A.J., Reichherzer T., Hill G., Suri N., Carff, R., Mitrovich, T, & Eberle, D. (2003).
Knowledge Modeling and the Creation of El-Tech: A Performance Support and Training System for
Electronic Technicians. Expert Systems with Applications. 25(4). pp. 483- 492.

Coffey, J.W., Hoffman, R.R., & Novak, J.D. (2010). Applications of Concept Maps to Web design and Web
work. In R. W. Proctor & K.-P. L. Vu (Eds.), Handbook of Human Factors in Web Design, 2nd Edition.
pp. 211 – 230, Mahwah, NJ: Erlbaum

Eskridge, T., & Hayes, P. (2006). Formalizing the Informal: A Confluence of the Semantic Web and Concept
Maps. In: A. J. Cañas & J. D. Novak (Eds.), Concept Maps: Theory, Methodology, Technology.
Proceedings of the Second International Conference on Concept Mapping. San José, Costa Rica:
Universidad de Costa Rica, pp. 247-254.

Ford, K.M., Cañas, A.J., & Coffey, J.W. (1993). Participatory Explanation. Proceedings of the Sixth Florida AI
Research Symposium (FLAIRS '93), Ft. Lauderdale, FL, April, 1993. pp. 111-115.

Graudina, V., & Grundspenkis, J. (2008). Concept Map Generation from OWL Ontologies. In A. J. Cañas, P.
Reiska, M. Åhlberg & J. D. Novak (Eds.), Concept Mapping: Connecting Educators, Proceedings of the
Third International Conference on Concept Mapping, Tallinn, Estonia & Helsinki, Finland: University of
Tallinn, pp. 173-180.

Gomez-Gauchia, D-A., Diaz-Agudo, B., & Gonzalez-Calero, P. (2004). Two-Layered Approach to Knowledge
Representation Using Conceptual Maps and Description Logics. In A J. Cañas, J. D. Novak & F. M.
González, (Eds.), Concept Maps: Theory, Methodology, Technology, Proceedings of the First
International Conference on Concept Mapping, Universidad Pública de Navarra: Pamplona, Spain, pp.
281–288.

Leake, D., Maguitman, A., and Reichherzer, T. (2004). “Googling” from a Concept Map: Towards Automatic
Concept Map-based Query Formation. In A. J. Cañas, J. D. Novak, & F. M. González (Eds): Concept
Maps: Theory, Methodology, Technology, Proceedings of the First International Conference on Concept
Mapping, Universidad Pública de Navarra: Pamplona, Spain, pp. 409-416.

Novak J.D., and Cañas, A.J. (2004). Building on New Constructivist Ideas and CmapTools to Create a New
Model of Education. In A. J. Cañas, J. D. Novak, & F. M. González (Eds.), Concept Maps: Theory,
Methodology, Technology, Proceedings of the First International Conference on Concept Mapping,
Universidad Pública de Navarra: Pamplona, Spain, pp. 469-476.

Novak J.D., & Gowin, D.B. (1984). Learning how to learn. New York: Cambridge University Press.

Richardson, R., Goertzel, B., and Fox, E. (2006). Automatic Creation and Translation of Concept Maps for
Computer Science-related Theses and Dissertations. In: A. J. Cañas & J. D. Novak (Eds.), Concept Maps:
Theory, Methodology, Technology. Proceedings of the Second International Conference on Concept
Mapping. San José, Costa Rica: Universidad de Costa Rica, pp. 32-35.

Wierzbicka, A. (2006). Semantics, Primes, and Universals. Oxford, UK, Oxford University Press.

Wilde, N., Coffey, N.W., Reichherzer, T., White, L. (2012). Open SOALab: Case Study Artifacts for SOA
Research and Education. to appear, 4th International Workshop on Principles of Engineering Service-
Oriented Systems, PESOS 2012, Zurich, Switzerland, June, 2012.

