Using Concept Maps to Develop a Didactic Explanation of a Dress with Ambiguous Colours

Francisco L. Naranjo, Guadalupe Martínez, Ángel Luis Pérez, Pedro J. Pardo, María Isabel Suero
University of Extremadura (Spain)

Manuel Melgosa
University of Granada (Spain)
Introduction

• In the present work we will use concept maps to facilitate the process of conceptual change in students from the analysis of their preconceptions on a particular topic, namely the perception of colour of the famous dress with ambiguous colours.
#thedress
#theDress

- This phenomenon began on late February 2015, when a user of the social networking service Tumblr published a photo of a dress and asked people about what colour was the dress.
Surprisingly, the answers to this simple question were divided into two very different categories: Blue & black / White & gold
Objectives

• Develop an educational and informative explanation using concept maps to promote conceptual change on colour perception.
• Find an answer to the question: Why is the dress perceived in different colours by different people?
Why is the dress perceived in different colours by different people?

- To answer this question, we must first answer another preliminary question:

On what depends the colour we perceive in a certain object?
First Elaboration Level

• It is advisable to take first the online test available at http://grupoorion.unex.es/test to detect colour misconceptions.

2. What colour will the apple look once the white light lamp is turned off?

- White
- Blue
- Red
- Green
- Magenta
- The apple is no longer seen

3. What colour will the apple look under blue light?

- Green
- Cyan
- The apple is no longer seen
About the Apple Test

- Over 20,000 respondents
- Only 15.7% answered correctly
- The vast majority (78.2%) of incorrect response patterns matched just four sequences, corresponding to four types of misconceptions.
- This high percentage of wrong answers revealed the need to develop educational tools to achieve progressive conceptual changes, allowing us to combat the misconceptions found around the perception of colour.
Colour is not a property of the object

• One of the most widespread misconceptions is to consider colour as a property of the object.
• To combat this misconception it is useful to use concept maps allowing us to refine the meaning of the propositions within.
• Thus, the first conceptual change needed to explain the perceived colour of a given object is to clarify that it depends not only on its characteristics, but also on the incoming light, which is reflected by the object.
First Conceptual Change

BODIES have COLOURS that are seen when illuminated by LIGHT.

LIGHT has COLOURS that are seen when reflected by BODIES.
Second Elaboration Level

• Both stick figures are wearing the same dress.
• Commonly, we will perceive the blue faced stick figure on the left dressed in “white and gold” and the yellow faced stick figure on the right dressed in “blue and black”.

[Two stick figures are shown, one blue with a white and gold dress, and one yellow with a blue and black dress.]
Second Elaboration Level

- However, despite perceived differently, if we check the RGB colour coordinates we can note that both dresses have the same colour coordinates (you can use a colour picker tool to check).
Second Elaboration Level

RGB (113, 94, 58)
RGB (135, 154, 189)
The colour of the environment influences the colour perceived

• The experience shows that the colour of the environment (background and surround) strongly influences the colour we perceive in an object.

• If we want to incorporate this content in a concept map, we must expand the proposition developed, which implies a second conceptual change.

• The colour an object is perceived depends on both the colour of the light traveling from the object to our eyes and also the colours of the environment (background and surround).
Second Conceptual Change

THE COLOUR OF AN OBJECT

depends on

THE COLOUR OF THE LIGHT THAT IT IS REFLECTING

THE COLOUR OF AN OBJECT

depends on

THE COLOUR OF THE LIGHT THAT IT IS REFLECTING

THE SURROUNDING COLOURS
Third Elaboration Level

• On the following slide, please stare at the black dot in the centre of the left image for 30 seconds.

• Then, without moving your eyes from the black dot, go to the next slide.
Chromatic Adaptation

• If you did it right, the second image would have looked in full colour for a few seconds.
• However, as you can see, the image is in fact a black & white photograph.

Puerta de Palmas (Badajoz, Spain).
Chromatic Adaptation

• This is due to the phenomenon known as “chromatic adaptation”, which leads us to add another progressive differentiation in our concept map.

• The perceived colour for a given object depends on the colour of the light traveling from the object to our eyes, the colours of the surrounding environment and also the colours visualized immediately before.
Third Conceptual Change

THE COLOUR OF AN OBJECT

depends on

THE COLOUR OF THE LIGHT THAT IT IS REFLECTING

THE SURROUNDING COLOURS
Fourth Elaboration Level

• Have the squares marked A and B the same colour?
Fourth Elaboration Level

• Are you sure?
Colour depends on subjective mechanisms

- The perceived colour of the squares depends on the context.
- Our visual system needs to determine the colour of objects, and it uses several mechanisms to determine where the shadows are and how to compensate for them, in order to determine the “true colour” that belongs to the surface.
Colour depends on subjective mechanisms

• Thus, our visual system takes into account first local contrast: a square that is lighter than its neighbouring squares is probably lighter than average, and vice versa.

• The light square B in the shadow is surrounded by darker squares. Thus, even though the square is physically dark, it is light when compared to its neighbours.

• The dark checks outside the shadow, conversely, are surrounded by lighter checks, so they look dark by comparison.
Colour depends on subjective mechanisms

- The visual system also tends to ignore gradual changes in light level, so that it can determine the colour of the surfaces without being misled by shadows.
- Last, the appearance of the square is aided by the form of the cross-junctions formed by 4 neighbouring squares. This type of intersection is usually a signal that all the edges should be interpreted as changes in surface colour rather than in terms of shadows or lighting.
Fourth Conceptual Change

THE COLOUR OF AN OBJECT

depends on

THE COLOUR OF THE LIGHT THAT IT IS REFLECTING

THE SURROUNDING COLOURS

THE COLOURS VISUALIZED JUST BEFORE

OBJECTIVE FACTORS

as

THE COLOUR OF AN OBJECT

depends on

SUBJECTIVE FACTORS

THE COLOURS VISUALIZED JUST BEFORE

THE SURROUNDING COLOURS
What kind of mechanisms?

• Within certain limits, we have a tendency to perceive an object always with the same colour, regardless of the type of illumination.

• To avoid confusions, our visual system has evolved by developing what is known as colour constancy.
Colour constancy

• Colour constancy is a mechanism by which our visual system evaluates all colour information coming from the whole scene we are viewing.

• From this information, it can be assumed that our brain attempts to determine the approximate composition of the illuminating light, which is then discounted.
Discounting the illuminant

• Thus, the perceived colour of a given object depends on the colour of the light traveling from the object to our eyes, the colours of the environment, the colours visualized immediately before, and the perceptual mechanism called discounting the illuminant.
Final Map

THE COLOUR OF AN OBJECT

depends on

OBJECTIVE FACTORS
THE COLOUR OF THE LIGHT THAT IT IS REFLECTING

THE SURROUNDING COLOURS

THE COLOURS VISUALIZED JUST BEFORE

SUBJETIVE FACTORS
The ability to

DISCOUNT THE ILLUMINANT
Back to #theDress

- We acquired a model of the dress from the original manufacturer.
Results

• The results obtained in our colour laboratory have revealed that the problem of disparities in colour perceptions is not attributable to the dress itself, because all the respondents have expressed that they saw such dress as blue and black.
Results

• Specifically, we used a sample of more than 300 people of different ages and educational backgrounds.
• They had to complete a questionnaire with independent variables related to gender, age, education, etc.
• They also identified the perceived colours of the dress under different light sources.
The problem is in the photograph

- However, we obtained different answers if they were shown the viral photograph, so:
 - In what conditions was that picture taken?
 - What kind of illumination was used?
 - Which camera model and settings were used?
• The most interesting question to us is: **How can we explain that most people perceive the dress in the photograph with so different colours?**

• The answer to this question, from an educational and informative point of view, is related to the different levels of elaboration shown in the previous concept maps.
• The fundamental objective of our visual system is to identify and recognize objects, and colour is one of the most useful tools for this goal.

• In the case of non-luminous objects, if we change the illuminant, the light reflected by the objects will also change.

• Thus, we should perceive them with different colours, which might make us think them as different objects.
• As we have seen, our visual system is probably able to discount the illuminant in a different amount, or as a consequence of different unknown factors.

• That is, the colours that people perceive in the photograph of the dress depend not only on the colours of the light traveling from every area of this photo to their eyes, but also on the specific backgrounds and surrounds behind this dress, the subjects’ specific ability to discount the illuminant, etc.

• Nevertheless, this mechanism of colour constancy is not triggered equally in all individuals, and some are abler than others to discount the illuminant.
• The background colour (indicated by the arrow) suggests that, when the picture was taken, a yellowish hue was added (due to the illuminant or the camera settings).
Discounting the illuminant

• If the brain of the person who perceives the photo is able to realize this and discount the yellowish illuminant, they will see the picture with the colours of the original dress, blue & black.
Not discounting the illuminant

• If they are unable to discount the yellowish illuminant, the brain will perceive the picture white & gold.
• We can assume that the discount of the illuminant is the most relevant factor to explain the differences between colours reported by different observers of the photography (not of the real dress).

• While currently this seems a reasonable hypothesis, it cannot be discarded that other factors (like observers’ pupil size) may have also played an important role in the problem we have considered here.
• The figure in the next slide shows the global concept map developed to give an educational and informative answer to the colour perception of the dress with ambiguous colours.
THE PERCEIVED COLOUR OF AN OBJECT depends on

OBJECTIVE FACTORS

as those shown in this

PAPER

THE SURROUNDING COLOURS

as shown in this

THE FAMOUS VIRAL DRESS

THE COLOURS VISUALIZED JUST BEFORE

MISCONCEPTIONS

which can be tested in our

ONLINE TEST

THE ABILITY TO DISCOUNT THE ILLUMINANT

FOCUS QUESTION:
ON WHAT FACTORS DOES
THE COLOUR PERCEIVED OF
AN OBJECT DEPEND?

COLOUR CONSTANCY

allows

helps

works

plays a role in

suggestions

CONCEPTUAL

CHANGES

BLUE AND BLACK

YELLOWISH COLOUR

is the main objective of

PHOTOGRAPH

is seen on the right bottom corner

THE VISUAL SYSTEM

is important for

THE SELECTION

OF THE SPECIES

PHYSIOLOGICALLY

CONSTRUCTIVIST

100% OF THE PEOPLE WHO
WERE SHOWN THE ORIGINAL
DRESS IN OUR COLOUR
LABORATORY

THE OBSERVERS

can be divided into

THOSE WHO DETECT THE
YELLOWISH COLOUR AS PART OF THE DRESS

THOSE WHO DETECT THE YELLOWISH COLOUR AS AN ADDITION TO THE WHOLE SCENE

BLUE + YELLOW = WHITE
AND BLACK + YELLOW = GOLD

THE LIGHT SOURCE
AND WRONG SETTINGS

SIMPLIFIED HYPOTHESIS

based on

LABORATORY MEASUREMENTS

THE BRAIN

is

LABORATORY MEASUREMENTS

have

do not have

BLUE AND BLACK

DISCOUNT THE ILLUMINAT

BLUE + YELLOW = WHITE
AND BLACK + YELLOW = GOLD

THE PHOTO
Acknowledgements

This Research was supported by the European Regional Development Fund (ERDF), the Ministry of Economy and Competitiveness of the Government of Spain, and the Regional Government of Extremadura, through grants FIS2013-40661-P and GR15102.
References (1/6)

• BuzzFeed Life. What colors are this dress?, http://www.buzzfeed.com/catesish/help-am-i-going-insane-its-definitely-blue
References (2/6)

References (3/6)

References (4/6)

• RIT University News: RIT color scientists explain the dress that went viral, https://www.rit.edu/news/story.php?id=51266
Grupo de Investigación

ORION

http://grupoorion.unex.es