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Abstract. At the Nacional Experimental University of Tachira (UNET), Venezuela, we have found that first year physics
students often ignore the important role mathematics and particularly mathematical models play in the learning of physics.
Students use equations frequently misunderstood as a set of ‘cook-book’ procedures applied to solve physics problems, without
understanding the reason for using a particular function or model to solve a problem. This article explains a strategy for the
teaching and learning of mathematical models commonly used in physic courses. It uses Concept Maps to improve
understanding of basic conceptual structures involved in the mathematical modelling process of physical phenomena, and
“Gowin’s vee” as a tool that facilitates the process of building student’s own knowledge of a mathematical model for a particular
experiment. Results reinforces the notion that in order to explain physical phenomena, the process of proposing appropriate
mathematical models, verifying and justifying them is greatly facilitated through the combined usage of concept maps and vee
diagrams and also serves to promote the process of "thinking about thinking” or more precisely metacognition.

1 Introduction

Mathematics is essential for the development and comprehension of physics. This science allows the
construction of mathematical models to represent physical phenomena nevertheless students ignore the
important role mathematics play in the learning of physics. They use equations often misunderstood as a set of
‘cook-book’ procedures applied to solve physics problems, without understanding the reason for using a
particular function or model to solve a problem. This is evident when students have to create mathematical
models to represent physical phenomena in the Physics laboratory. Thus we designed a new strategy based on
the use of Concept Maps and Gowin’s vee due to the encouraging results obtained with these heuristic tools in
our regular physics courses (Ramirez de M, Sanabria & Aspee, 2006; Sanabria & Ramirez, 2006).

2  The strategy

The strategy was implemented throughout four successive phases outlined in Figure 1. This strategy uses
Concept Maps (Novak and Gowin, 1984) to improve understanding of basic conceptual structures involved in
the mathematical modelling process of physical phenomena, and “Gowin’s vee” as a tool that facilitates the
process of building student’s own knowledge of a mathematical model for an experiment. During the initial
sessions we encouraged students’ use of concept mapping in order to explore basic mathematical function
concepts as well as the concept of models in physics. Afterwards, students were encouraged to analyze and
carry on experiments using Gowin’s vee to model physical phenomena.
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Figure 1. Concept Map of the Strategy for Mathematical modelling of physical phenomena.



3 Methodology and Results

PHASE

TEACHING ACTIVITIES AND
ASSIGNEMENTS

RESULTS

|
Learning about
Concept Maps and
Gowin’s vee

-Teaching activities: Explain Concept Maps
(Ramirez, Sanabria & Aspeé, 2006), and
Gowin’s vee (Sanabria & Ramirez, 2006)
-Students Assignment: Build concept maps
for a single physics topic and a Gowin’s vee
diagram for a simple real life experiment

Most of the students (84%) could produce the
assigned maps successfully. Gowin’s vee seems
to be more difficult for them when following up
and reporting a simple experiment. (62% of the
students completed them correctly).

1
Comprehension of
the mathematical

functions:
Linear Function
Power Function
Exponential Function

Transformation of
non linear functions

-Teaching activities: Linear Function, Power
Function, and Exponential Function were
explained by the teacher in a traditional way,
without using Concept Maps or Gowin’s vee.

-Students Assignment: Build concept maps
for these basic mathematical functions.

-Teaching activities: Explain how these
functions may be transformed into a linear
form.

-Assignment: Build a concept map to explain
linear and nonlinear functions and how they
may be transformed.

Results were classified as follows:

a) Satisfactory: Those maps which show clearly
the main idea, the essence, subordinate concepts
and relationship among them for a given
mathematical function. (65%).

b) Insufficient (35%): In this category we
distinguish between maps exhibiting conceptual
mistakes in mathematical prior knowledge (12%),
and maps showing an incorrect application of the
concept map heuristic tool (23%).

58% of the students ended up with satisfactory
maps. Figure 2 shows a map made by a student
about power function. Also, the concept map
about transformations of linear and non linear
functions made by a student is shown in Figure 3.

11
Learning about
models in science

-Quantitative models
-Qualitative models
(which will not be
explained in this
article)

-Teaching activities: Explanation of models
in science. Quantitative and qualitative
models.

-Assignment: Build a concept map explaining
the conceptual structure “model in science”.

-Teaching activities: Explain Gowin’s vee as
a tool to orientate the planning of an
experiment.

-Assignment: Make the experiment about a
simple pendulum. Graph results and interpret
them. Students must use Gowin’s vee to
show their work.

80% of the students, managed to produce maps
evidencing acceptable understanding of the
concept “Model” These results support previous
findings evidencing that the easiest way for
beginners to design a concept map is from the
information given in a written text. In
comparison, beginners find it more difficult to
make a map from the contents given in a lesson.
A lower percentage (58%) was obtained when
students were asked to build concept maps in
Phase Il about mathematical functions following
their class notes and what the teacher said in the
lab class.

Seventy four out of a hundred students managed
to provide the adequate mathematical function
(power function) for the set of values T against
length of the string (L). The others incorrectly
generated an exponential model from their
analysis of the data graphed on a semi-
logarithmic paper as they were convinced that an
exponential function was an appropriate model.
Students’ concept maps about the mathematical
functions helped them to find the adequate
mathematical model.

v
Modelling of
physical phenomena

-Teaching activities: Orientate the process of
construction of Gowin’s vee, graph and
mathematical models.

-Assignment: Make each experiment. Graph
results and interpret using Gowin’s vee.

Students get acquaintance with the use of
Gowin’s vee and concept maps to understand
physical phenomena and construct mathematical
models to account for them. Also they finished
with higher levels of confidence in their abilities
to plan, carry out and analyze an experiment.

Table 2. Methodology and Results.

Figure 2 shows a map worked by a student to explain the concept Power Function. Figure 3 shows a map
made by another student about Linear and non linear functions.
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Figure 2. Student’s Concept Map of “Power Function”. Figure 3. Student’s Concept map of Linear and non linear functions.

As it was explained before, in phase 111 students are encouraged to use our own adaptation of Gowin’s vee
(see Figure 4) in order to organize, plan and carry on the analysis of a physical phenomenon which may be
explained by means of a quantitative model. The teacher explains the different steps and helps students to carry
on the experiment using this heuristic tool. After that students are encouraged in Phase IV to develop their own
Gowin’s vee for each experiment. Figure 5 shows the diagram produced by a student for the experiment about
simple pendulum.
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Figure 4. Adaptation of Gowin’s vee used with the students to analyze a physical phenomenon.
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Figure 5. Gowin’s vee for the experiment of Pendulum made by a student.

4  Conclusions

Previous research results allowed us to propose that the main problems faced by students which fail the physics
laboratory course were mainly due to (a) lack of motivation for studying models; (b) insufficient prior
knowledge of the linear, power, exponential and functions; (c) Students’ difficulties when explaining the
process that leads them to build their models; (d) Students’ difficulties in communicating results of their
experiments.

We overcome these difficulties with a strategy that uses concept maps to improve understanding of
concepts and basic conceptual structures involved in the mathematical modelling process of physical
phenomena, and “Gowin’s vee” as an adapted tool that facilitates the process of building student’s own
knowledge of a mathematical model for a particular experiment.

The results after the application of the strategy showed that 81% of students passed the course. Results
allows us to propose that improvement in overall performance along the lab course may be due to (a) An
increase in student’s motivation to develop the experiments with the aid of the heuristic tools concept maps and
Gowin’s vee; (b) Consciousness of the necessity to improve knowledge about mathematical functions and the
plotting of curves in order to find adequate models to explain physical phenomena and (c) An improvement in
students’ ability to communicate results and to interpret their findings while studying physical phenomena. We
have continued using the strategy with satisfactory results. We are convinced that the process of proposing,
verifying and explaining physical phenomena is greatly facilitated through the combine usage of concept maps
and vee diagrams. Finally, the ability to model physical phenomena serves to promote the process of "thinking
about thinking," or more precisely metacognition. This strategy can be adapted for other purposes and in other
educational contexts.
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